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ABSTRACT 

Strategic management scholars increasingly rely on diverse research methodologies to 

investigate the field’s central questions. In this paper, we advance knowledge by demonstrating 

how Monte Carlo simulations (MCSs) can serve as an essential tool for evaluating and enhancing 

these techniques. To do so, we first overview strategy research that has employed MCSs to 

adjudicate statistical or econometric techniques. We then describe the intuition and main steps for 

specifying and employing MCSs, which involve defining the research question, designing a data 

generation (DGP) process, analyzing data, and summarizing/communicating results. To facilitate 

the implementation of MCSs, we developed a custom generative pre-trained transformer (GPT) 

that enables researchers to produce the code (R, Stata, and/or Excel) necessary to design and 

execute MCSs. We close with a research agenda for strategy scholars interested in using MCSs 

to advance their own methodological pursuits.  

 

Keywords: Monte Carlo simulations, custom GPT, data-generating process, statistical 

properties, research methodology  
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INTRODUCTION 
  

Since its inception, the field of strategic management has long focused on the firm as the 

key unit of analysis, seeking to understand how companies create and sustain competitive 

advantage in dynamic and uncertain environments (Nag et al., 2007; Drnevich et al., 2020). To 

this end, Rumelt et al. (1994) identified four fundamental questions central to strategy 

scholarship—how firms behave, why firms differ, what value headquarters provide, and what 

determines success in international competition—that continue to define the field’s core 

imperatives (Leiblein and Reuer, 2020). But just as these questions represent the bedrock of 

strategic management research, they also underscore the inherent complexity researchers 

encounter when seeking to isolate organizational decisions and corresponding outcomes 

(Duhaime et al., 2021). Firms exist in a nexus of ever-evolving internal and external factors, 

including managerial judgment, organizational talent, internal competition for resources, 

competitive dynamics, and socio-institutional considerations, among so many others that 

ultimately drive heterogeneity in performance across businesses (Hamilton and Nickerson, 2003; 

Ghemawat and Levinthal, 2008; Leiblein et al., 2018; March and Sutton, 1997).  

Stated plainly, then, the statistical models researchers employ cannot always capture the 

complex interdependencies often present in strategy research (Bettis and Blettner, 2020). 

Accentuating these complexities, empirical research in strategic management is also often messy 

(Natividad, In press; Lee, 2025). Instead of using carefully randomized controlled experiments in 

laboratories, strategy scholars commonly adopt archival data from sources to test hypotheses 

involving managerial decision-making and firm strategy. This reliance on secondary data stems 

from the fact that randomly assigning firms or top managers to treatment conditions is rarely 

feasible in strategic management research. Firms in these databases, however, vary dramatically 
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on a range of dimensions (Henderson et al., 2012) in ways that may confound hypothesis testing, 

causal inference, and knowledge accumulation to build and test theories (Hill et al., 2021). Taken 

together, these factors create substantial empirical challenges for researchers estimating causal 

relationships implied by strategy theory (Natividad, In press).  

To help account for these empirical challenges, strategy researchers increasingly rely on 

advanced analytical and econometric techniques to test their hypotheses, but there remain 

concerns about the credibility and robustness of empirical findings in the field (Lee, 2025). It is, 

therefore, increasingly vital for scholars to understand the effectiveness of complex statistical 

techniques. Historically speaking, methodologists have often employed sophisticated 

mathematical equations to evaluate methodological approaches. More recently, however, strategy 

scholars have employed Monte Carlo simulation (hereafter MCS)1 studies to “approximate 

difficult to track mathematical and statistical modeling problems” (Chalmers and Adkins, 2020: 

248). This small (but growing) methods-oriented research in strategy has leveraged MCSs to 

illustrate and reveal how empirical protocols unfold in the presence of data rather than 

mathematical theory. For instance, strategy scholars have adopted MCSs to examine instrumental 

variables (e.g., Semadeni et al., 2014), sample selection (e.g., Certo et al., 2016), limited 

dependent variables (e.g., Zelner, 2009), omitted variables (e.g., Busenbark et al., 2022), and 

collinearity (e.g., Kalnins, 2018), among many others. 

Simply stated, MCSs can be used to help researchers better understand how different data 

structures and properties influence the effectiveness of the estimators they employ. Using MCSs, 

researchers first build data with known data generation processes (DGPs) and then examine the 

 
1 Our use of the term “simulation” does not include other types of simulations, such as those used in computational 
modeling (Posen et al., 2024). We recognize that advancing methodology is only one application of Monte Carlo 
simulations, but it is sufficiently novel and valuable that we focus our research on that particular imperative.  
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effectiveness of different methodological techniques used to analyze the data. To this end, 

Chalmers and Adkins (2020: 248) suggest MCSs allow researchers “to independently repeat a 

computational experiment many times,” which Lohmann et al. (2022: 2) note can inspire 

recommendations that “often reach seminal status.” In this way, MCSs allow researchers to 

show—and not just tell—readers how certain techniques or estimators perform in different 

scenarios germane to a given domain or discipline. 

Despite the benefits of research on the efficacy of statistical techniques, most 

organizational scholars are not trained in how to design or interpret MCSs (Sturman, 2023). After 

all, researchers publishing papers with MCSs often write to appeal to readers/reviewers who are 

familiar with the technique and less so for those not as acquainted with the method, which makes 

these papers difficult for some to understand (Lohmann et al., 2022) and obviates many of the 

benefits MCSs offer relative to econometric theory. To this end, many users of the insights from 

these methods studies—that is, empirical researchers seeking to test their hypotheses—may not 

be well-positioned to fully grasp the nuances of the corresponding MCSs and could therefore 

potentially misappropriate or misinterpret the message.  

The objective of our work is to enhance empirical research in strategic management by 

providing a primer that explains the intuition underlying MCSs and demonstrates how they can 

serve as an essential tool for evaluating statistical techniques that strategy scholars may employ. 

While researchers in statistics (Sigal and Chalmers, 2016), epidemiology (Lohmann et al., 2022), 

and psychology (Chalmers and Adkins, 2020) have provided reviews of MCSs in different 

contexts and for different purposes, our primer elaborates how strategy scholars have employed 

the technique to advance research methodologies germane to organizational research. We also 

explain how researchers might design MCSs to mimic empirical contexts confronted by strategic 
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management scholarship, a pursuit we facilitate by developing and describing a custom 

generative pre-trained transformer (GPT) that enables researchers with almost any degree of 

methodological or coding ability to employ MCSs.  

The structure of our paper includes three sections. In the first section, we provide 

background by explaining the reasons why strategy researchers might employ MCSs. We 

specifically highlight how strategy researchers primarily adopt MCSs to evaluate the 

effectiveness of statistical or econometric techniques. To help further emphasize the scholarly 

usage and importance of MCSs, we also review strategic management studies that have 

employed them to investigate methodological issues. Demonstrating the increasing relevance of 

MCSs, we notice that half of the papers in our review have appeared since 2020.  

In the second section of our paper, we describe the basic steps of the simulation process. 

Specifically, we discuss how scholars develop research questions, design DGPs, summarize data, 

and interpret the results. We also overview the impact of both effect size and statistical power 

when designing MCSs. To help clarify these four steps, we illustrate how Semadeni et al. (2014) 

used each of the four steps in their investigation of endogeneity and instrumental variables.  

When implementing the four steps of MCSs, one of the largest obstacles for researchers 

involves writing code, which is why various simulation-specific commands and packages have 

been written in different programming languages. To aid in the coding process, our custom GPT 

facilitates simulation protocols and makes them more accessible for researchers interested in 

employing the technique to investigate their own methodological inquiries. While this GPT can 

develop code for a variety of contexts and different software packages, we demonstrate its 

usefulness by providing a simple example illustrating how researchers can use this tool to 

generate multilevel data (an empirical reality for most strategy work). In contrast to other 
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research on MCSs that uses specific programs or packages that may become outdated, our 

dynamic GPT ensures scholars can utilize the best and newest coding practices for MCSs.  

In our final section, we provide an agenda for scholars to use MCSs to advance strategy 

research, offering several ideas for future work. We highlight that almost all methodology 

scholarship adopting MCSs creates cross-sectional datasets with normally distributed variables 

(Certo et al., 2020; Busenbark et al., 2022; Semadeni et al., 2014), whereas strategy data are 

increasingly non-normal and exhibit nested characteristics such as a panel or multilevel structure 

(Certo et al., 2024b; Bliese et al., 2020). We also describe how researchers can employ MCSs as 

a means of generating data to mirror their own endeavors.  

In sum, the evolving complexity of data and hypotheses in strategy research necessitates 

the use of advanced empirical methods. Yet, if these methods are applied inconsistently or 

incorrectly, even with the best of intentions, they can lead researchers astray from gaining true 

insight and can gradually stifle the growth of knowledge in our discipline. We are hopeful our 

contributions will aid strategy researchers in critically evaluating and enhancing the efficacy of 

the research methods we employ.  

USING MONTE CARLO SIMULATIONS 

 MCSs were developed in Los Alamos during the Manhattan Project in World War II to 

solve problems related to nuclear physics (Gill, 2015). MCSs involve using computers to 

generate repeated draws of random numbers with pre-specified properties to provide insights into 

complex problems (Lohmann et al., 2022). The codename Monte Carlo was chosen by the 

scientists because the random draws and probability sampling in MCSs reminded them of casino 

gambling (Gill, 2015). MCSs are based on the law of large numbers and the central limit theorem 

(for a review, see Dunn and Shultis, 2012). The law of large numbers states that the sample mean 
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converges to the population mean as the number of trials or observations increases. Relatedly, the 

central limit theorem indicates the mean of a random variable will approximately follow a 

normal distribution in sufficiently large samples (Zhang et al., 2023), such that MCSs “depend 

on this critical theorem” (Dunn and Shultis, 2012: 45).  

MCSs in Social Sciences 

Researchers have used MCSs for a variety of purposes beyond investigating problems in 

nuclear physics, but these disparate applications can make it difficult to understand their 

underlying intuition (Astivia, 2020). In the social sciences, especially strategic management, 

researchers often use MCSs to assess the effectiveness of statistical methods (Astivia, 2020). As 

Hallgren (2013: 44) states, “Although, in general, statistical questions can be answered directly 

through mathematical analysis rather than simulation, the complexity of some statistical 

questions makes them more easily answered through simulation methods.” Stated bluntly, MCSs 

allow methodological scholars to investigate the efficacy of empirical models under a variety of 

conditions that may not be readily accessible (or are too esoteric) for mathematical theory. For 

instance, social scientists have used MCSs to evaluate the performance of estimators (Kenny et 

al., 2015), implications of violated model assumptions (Arnau et al., 2013), and impact of 

variables with irregular characteristics (Astivia, 2020). To illustrate the value of MCSs, Astivia 

(2020) reports that during a focal year, every article in the three leading journals in quantitative 

psychology incorporated MCSs in some way.  

When examining the effectiveness of statistical methods, researchers assess three central 

properties of any empirical estimation technique—bias, efficiency, and consistency (Greene, 

2018; Kennedy, 2008). Bias refers to the extent to which the estimated coefficient deviates from 

its true value (Semadeni et al., 2014). Scholars might examine bias, for example, by studying the 
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extent to which an estimator (e.g., OLS) reports coefficients that deviate from the true values 

specified in the simulation (we will describe this in more detail). Efficiency is evaluated with the 

precision of coefficient estimates, which scholars often evaluate by comparing how standard 

errors differ across different estimators. In the context of statistical theory, lower (higher) 

standard errors typically indicate higher (lower) levels of efficiency. Finally, consistency assesses 

whether the model produces stable and reliable results as the sample size increases (Wooldridge, 

2010). Estimators are consistent when a parameter (e.g., coefficient) becomes closer to its true 

value as the sample size in the simulation increases. Researchers can use all three of these 

properties to evaluate the effectiveness of estimators or data properties for a given model. 

MCSs in Strategy Research  

Taking a cue from the various social science domains we briefly summarized in the 

preceding section, strategy scholars have also adopted MCSs (and increasingly so) to evaluate 

statistical properties or techniques. We now turn toward offering an overview of the strategy-

leaning studies that have employed MCSs. We specifically review those that sought to evaluate 

bias, efficiency, and/or consistency across various conditions of statistical properties (e.g., 

variable distributions, nested data) and/or analytic techniques (e.g., OLS, probit regression). 

To locate strategy research that has adopted MCSs for these purposes, we reviewed 

articles published from 1997 to 2024 in Strategic Management Journal, Organization Science, 

Organizational Research Methods, Journal of Management, and Strategic Organization, 

collectively representing the top management outlets that consistently publish methodological 

research. We searched Google Scholar using the keyword “simulation(s)” and then manually 

scrutinized each to ensure a focus on MCSs rather than other types, such as agent-based MCSs or 

N-K modeling. We excluded articles that only mentioned the term Monte Carlo simulation 
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without providing sufficient details, such as the number of iterations, sample size, or outcome 

measures, as these details are essential for a comprehensive understanding of its application. In 

the end, our protocol identified 18 strategic management studies that used MCSs, with half of 

these articles published since 2020.   

After identifying these studies and evaluating their content, it became apparent that there 

exist four broad categories or applications (as it pertains to advancing research methodologies) of 

MCSs, all of which involve important issues in empirical research in strategic management. 

Specifically, as we delineate in the remainder of this section, we classify the studies as those that 

employ MCSs to examine variable distributions, endogeneity/omitted variables, self/sample 

selection, and nested data. We offer a summary of our review in Table 1.  

--Insert Table 1 about here-- 

 Variable distributions. Several papers in strategic management have used MCSs to 

understand how the probability distributions of variables may influence statistical analyses. For 

example, Henkel (2009) uses MCSs to examine how skewness in return distributions can 

confound the risk-return association between the mean and variance of firms’ returns. Certo et al. 

(2024b) similarly explore the efficiency of modeling techniques such as OLS, winsorization, log-

transformation, robust standard errors, bootstrapping, and quantile regression in the context of 

non-normally distributed dependent variables. Also involving the distribution of dependent 

variables, Zelner (2009) assesses the statistical significance of predicted probabilities associated 

with the changes in predictors specified for logit and probit models, both of which are 

necessitated by a binary outcome indicator. Along these same lines, Woo et al. (2023) examine 

how rare binary event rates influence coefficient estimates, standard errors, statistical power, and 

model convergence failures. Scholars have also adopted MCSs to investigate the veracity of 
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estimators when variables take the form of ratios. Certo and colleagues (2020), for example, 

study the potential issues of spuriousness and statistical power in the estimation of ratio 

variables, an issue Villadsen & Wulff (2021) extend by adjudicating whether fractional response 

modeling estimates more consistent parameters when a dependent variable is a proportion.  

 Endogeneity and omitted variables. Scholars in strategic management have used MCSs 

to explore the effects of endogeneity or omitted confounders on parameter estimates and model 

performance. In one of the first such studies, Semadeni et al. (2014) use MCSs to investigate the 

prevalence of bias from endogeneity and the degree to which various strengths of instrumental 

variables can ameliorate the bias. Building directly on this simulation, Busenbark et al. (2022) 

employ MCSs to assess whether certain magnitudes of omitted variables produce more bias, as 

well as the inefficiency of two-stage modeling, a concept Eckert and Hohberger (2023) also 

extend by exploring the consistency of Gaussian Copula estimation. Adopting a slightly more 

subtle treatment of omitted variables, Kalnins (2018) uses MCSs to examine the effectiveness of 

variance inflation factors (VIF) to detect multicollinearity driven by unobserved common factors. 

Along these lines, Frake et al. (2024) use MCSs to examine how model choices affect collider 

bias in executive compensation. 

 Selection bias. Scholars in strategy have also used MCSs to explore and address 

selection bias, whether it occurs in the form of sample selection or self-selection. Certo et al. 

(2016) employ MCSs to examine different conditions under which sample selection bias may 

occur, including the correlation between the error terms in the first and second stages of the 

model, a notion Wolfolds and Siegel (2019) further elaborate to examine the role of exclusion 

restrictions in Heckman’s two-step estimation. Clougherty et al. (2016) also show via their 

simulation that self-selection biases parameter estimates in OLS, indicating the importance of 



 

12 
 

using appropriate techniques such as the Heckman selection model. Whereas those studies tend 

to focus on selection into the sample, Balasubramanian et al. (2024) employ MCSs to investigate 

how assumptions about selection on the independent variable influence model results. 

 Nested data. Strategy researchers have also used MCSs to study nested (e.g., multi-level, 

longitudinal) data structures. Certo and Semadeni (2006), for instance, employ MCSs to explore 

the influence of contemporaneous correlation, heteroskedasticity, and autocorrelation on panel 

data analysis, particularly when using the OLS regression model. Parker and Witteloostuijn 

(2010) use MCSs in the context of moderation to test their proposed General Interaction 

approach against extant fit estimations, including fit-as-moderation, fit-as-deviation, and fit-as-

system perspectives. Similarly, Sharapov et al. (2021) assess the performance of the Shapley 

Value approach for variance decomposition across levels in nested data, using MCSs to compare 

the Shapley Value approach to traditional techniques like ANOVA, multilevel models, and 

variance component analysis.  

DESIGNING MONTE CARLO SIMULATION STUDIES 

In the previous section, we reviewed how strategy scholars have employed MCSs to 

study a variety of statistical issues with the central intent of advancing methodological pursuits. 

In this section, we review the primary steps for designing MCSs. Broadly speaking, MCSs 

involve generating data and variables with pre-specified properties (e.g., distributions, sample 

size, variable relationships) that the researcher can manipulate to examine the efficacy of 

different empirical models. As such, MCSs share some characteristics with experiments in the 

sense that scholars can manipulate conditions to investigate their research question or 

methodological focus (e.g., Beisbart and Norton, 2012). To do so, MCSs typically feature four 

interrelated elements: defining the research question, designing the DGP, analyzing data, and 
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summarizing model results. In the following sections, we review these four steps. To aid in 

understanding, we briefly review how Semadeni et al. (2014) implemented each of these steps to 

investigate endogeneity and instrumental variables. We also present these steps in Table 2. 

--Insert Table 2 about here-- 

Step 1: Defining the Research Question(s)  

The first step in using MCSs entails defining an appropriate research question. While 

empirical research in strategy often tests hypotheses based on theory, as we emphasized in the 

previous section, MCSs can be employed to examine questions about the efficacy of analytical 

techniques and/or the implications of data structures. In contrast to conceptual work, effective 

research questions in the simulation context are typically formed after reviewing practices in the 

literature (e.g., Woo et al., 2023), which can also highlight inconsistencies and/or the scope of a 

problem (e.g., Kalnins, 2018). Examples of broad research questions include: “How do various 

effect sizes influence the impact of endogeneity?”, “How can I use MCSs to better understand 

the best ways to analyze panel data?”, or “How does the impact of sample selection change as 

the variables are (non)normally distributed to different degrees?”, among many other potential 

lines of inquiry. In their study of endogeneity, Semadeni et al. (2014) defined their research 

objective to “provide a series of MCSs to illustrate the consequences of endogeneity and the 

robustness of the techniques prescribed to circumvent these consequences” (p. 1071). 

Step 2: Designing the Data Generation Process (DGP) 

Simulation design is fundamentally predicated on modeling a DGP. Whereas empirical 

researchers typically collect data and then use models to estimate the relationships (e.g., 

coefficients) between the variables, MCSs require the inverse approach. Specifically, scholars 

specify the distributions and relationships between the variables (e.g., correlations, coefficients) 
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and then use those specifications to generate the data.  

Variable distributions. The first step in designing a DGP involves specifying the 

distributions of the variables of interest. Researchers can indicate the distributions of the 

dependent, independent, and control variables (e.g., continuous, count, dichotomous). In this 

stage, scholars can then define the means and standard deviations (or other moments depending 

on the distributions) of all variables in the DGP (e.g., Eckert and Hohberger, 2023). In addition to 

specifying variables with normal distributions, researchers might also generate variables 

following non-normal distributions (e.g., gamma, Cauchy). When possible, decisions in this 

regard should match the research context the researcher is trying to study. Although simulating 

non-normally distributed data is often challenging, given the dearth of pre-existing commands in 

statistical packages allowing users to generate random variables that follow other distributions, 

the custom GPT that we describe later makes this process remarkably more accessible. 

Relationships between variables. Researchers must also stipulate the relationships 

between the variables of interest. As a simple example, researchers might use a DGP that results 

in groups with different means due to a treatment effect. As another example, researchers may 

simply generate a series of variables with pre-specified correlations (Certo et al., 2020). 

Alternatively, researchers might use a slope-based approach, whereby an algebraic equation 

generates the dependent variable as a function of independent variables and an error term (e.g., 

Busenbark et al., 2022). The slope-based process randomly draws a set of regressors (i.e., 

independent variables and an error term) and then calculates the dependent variable as a function 

of those variables and corresponding coefficients. Many simulation studies generate covariates 

and error terms with specified correlations or means in the first step and then use a slope-based 

process in the second step to generate the dependent variable as a function of those variables and 
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error term (Kalnins, 2018; Semadeni et al., 2014). Based on the reviewed studies contained in 

Table 1, using the slope-based DGP represents the most common approach. 

Specifying effect sizes. One of the key components of any DGP involves specifying 

appropriate effect sizes, which “refers to the magnitude of the relation between the independent 

and dependent variables” (Funder and Ozer, 2019: 156). Establishing the desired relationship 

between the independent and dependent variables in a simulation depends on the type of DGP 

the researcher uses. A correlation-based DGP combines a randomly drawn y that has a pre-

specified correlation with x (e.g., Certo et al., 2020; Kim et al., 2022), making the effect size (at 

least in terms of correlations) explicit. For the slope-based DGP, altering the coefficient or 

changing the relative variance of the independent variable or error term in any way will change 

the correlation between y and x. One challenge with the slope-based approach is researchers must 

calculate the correlation between the variables after generating the data and then iterate model 

conditions to achieve the desired effect size, which can require some trial and error. When 

simulating differences in group means, researchers might use variations of Cohen’s d as a 

measure of effect size (Kallogjeri and Piccirillo, 2023). Importantly, these various effect size 

measures can be converted back and forth using different formulas (Kelley and Preacher, 2012).  

Determining statistical power. After determining the appropriate effect size, researchers 

must also focus on statistical power, which is the probability a scientific investigation or 

statistical test would lead to a statistically significant result (Cohen, 1992). In the context of 

MCSs, researchers typically determine statistical power by specifying the percentage of 

iterations that report a statistically significant result (at any desired threshold), with higher 

percentages representing higher levels of statistical power. As we will describe later, deviations 

from the specified level of statistical significance—which can take any value between 0 and 1—
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would result in Type I or Type II errors. Research in psychology suggests scholars should aim for 

power levels of approximately 0.80 (Correll et al., 2020), meaning 80 percent of the iterations in 

a simulation would exhibit a statistically significant estimate. In the domain of MCSs, it is 

important to set baseline power levels that allow for fluctuations in both directions across 

conditions (e.g., around 65 to 80 percent).  

Turning back to Semadeni et al. (2014), these scholars designed the DGP whereby the 

dependent variable (y) was a function of an independent variable (x) multiplied by a coefficient, 

which they set to .1, as well as an error term (e). To investigate endogeneity, they varied the 

correlation between x and e (i.e., 0, .1, and .3). Based on their effect sizes and endogeneity levels, 

they used sample sizes of 100, 500, and 1000 to investigate statistical power.  

Step 3: Analyzing Data and Creating Outcome Measures 

Researchers using MCSs can run a statistical model on each generated dataset and save 

the corresponding estimates, which represents the central advantage of MCSs over mathematical 

theory. To do so, scholars iterate the DGP and the empirical models many times over, storing the 

results from each iteration. Generally speaking, there are two categories of simulation outcomes. 

The first type involves the characteristics of the dataset. For instance, researchers might save the 

moments (e.g., means, standard deviations, etc.) of x and y, the correlations between the 

variables, or any other data characteristic that appears relevant. The second category involves 

model parameter estimates. In the context of OLS regression, for example, researchers might 

save the coefficient, standard error, and p-value associated with each independent variable, as 

well as model-level outcomes such as R-squared or the F-statistic. Of course, these estimates 

vary depending on the type of model employed (e.g., OLS vs. logit). 

Extending our running example, Semadeni et al. (2014) ran OLS and 2SLS models on the 
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generated data and recorded parameter estimates (e.g., betas, standard errors) for each iteration. 

As we will discuss next, this enabled them to compare both bias and efficiency across each type 

of estimator and various simulated conditions. Given the nature of the empirical question at 

hand—involving the impact of endogeneity—Semadeni and colleagues also retained the 

statistical significance of Durbin-Wu-Hausman tests for each condition.  

Step 4: Summarizing Results 

After running the statistical models of interest across all the simulation iterations, 

researchers can then use the parameter estimates from the analytic model to evaluate the three 

central properties of any empirical estimation technique: bias, efficiency, and consistency 

(Kennedy, 2008; Greene, 2018). In Table 3, we depict several summarized results scholars can 

consult to quantify the extent to which the simulation exhibits bias and efficiency. As Semadeni 

et al. (2014) describe, researchers can examine the average or median value (and/or its standard 

deviation) of the estimated coefficient across all the simulated iterations. Bias exists if that value 

deviates from the specified coefficient value. Whereas inferential statistics are aimed to help 

approximate the frequency the model would estimate the true value in repeated hypothetical 

samples, MCSs allow scholars to examine how often this occurs in actual repeated samples 

across all the simulation iterations. 

 In addition to examining bias, it is possible to also assess the efficiency of each model. 

Efficiency is evaluated with the precision of coefficient estimates. Typically, researchers work to 

triangulate efficiency by consulting either the standard error (Certo et al., 2024b) or statistical 

significance (Semadeni et al., 2014) of the estimates. In the case of MCSs, researchers can 

scrutinize the average (and standard deviation) of the standard errors across all the simulated 

conditions. Alternatively, they could evaluate the percentage of simulated iterations in which a 
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coefficient is statistically significant at any desired threshold. All else being equal, and assuming 

no bias that results in Type I or Type II errors, models with a higher (lower) percentage of 

statistically significant estimates would indicate higher (lower) levels of efficiency. 

 Finally, researchers can scrutinize the consistency of different specifications or modeling 

approaches. Doing so entails noting how simulation results change as the sample size increases, 

enabling scholars to ascertain if the model converges on the true properties (i.e., the specified 

relationships between variables) as the number of observations grows. Intriguing, our review of 

MCSs in strategy research suggests researchers are more interested in bias and efficiency than 

consistency, as scholars tend to emphasize the degree to which coefficients deviate from their 

specified value and exhibit Type I or Type II errors rather than how much estimates converge as a 

function of increases in the sample size. This preference may stem from the fact that empirical 

strategy studies tend to have large sample sizes, which may dampen concerns about consistency.  

Returning to our example, Semadeni et al. (2014) summarized the parameter estimates in 

their MCSs by creating median values across the 1,000 iterations for each condition. In other 

words, Semadeni and colleagues simulated observations for a given condition, employed OLS 

and 2SLS models, retained the estimates from those models, performed that process 1,000 times 

over, and then ultimately reported the median values across those 1,000 iterations for each 

condition. The authors then compared the median estimates across conditions and to the true 

values (which they specified in their DGP via Step 2) to draw conclusions about the effects of 

endogeneity on OLS and 2SLS at various different strengths of instruments. Comparing the 

median betas to the true values enabled them to evaluate bias, and comparing standard errors 

allowed them to evaluate efficiency. 

---Insert Table 3 about here--- 
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A PRE-TRAINED GENERATIVE TRANSFORMER (GPT) FOR MCSs 

In addition to delineating the steps and intuition involved in creating MCSs (i.e., our 

focus thus far), we now work to make MCSs in strategy research more accessible by describing a 

custom GPT we specifically designed to assist researchers seeking to employ MCSs via various 

software packages (namely R, Stata, and/or Excel). Our custom GPT guides users through the 

entire simulation process from conceptualization to implementation and interpretation. The 

custom GPT can be accessed via:  https://tinyurl.com/simcustomgpt (the GPT link is located at 

the Wiki section on the home page). Our approach to developing the custom GPT follows the 

recent efforts in other disciplines to leverage custom GPTs for specialized academic and 

professional tasks (e.g., Aykut and Sezenoz, 2024; Masters et al., 2024). 

Custom GPTs build upon the foundational knowledge of ChatGPT’s large language 

model, GPT-4o, but involve more idiosyncratic and tailored information from the designer than 

would be available in the broader ChatGPT platform outside of the custom GPT. Indeed, custom 

GPT designers can enhance these for specific applications by incorporating domain-specific 

information and providing detailed instructions to guide user interactions (Sevgi et al., 2024). By 

providing domain-specific information, the custom GPT can provide more accurate and user-

friendly responses to end-user prompts (Collins et al., 2024). A designer of the custom GPT can 

provide detailed guidance in terms of how the custom GPT interacts with end users by inputting 

specific instructions in the custom GPT’s configuration window.  

For our custom GPT, we provided specific open-access information related to simulation 

design and execution for R, Stata, and Excel. We also provided detailed instructions related to its 

interaction with an end user. We set it up to follow a structured, step-by-step approach, asking 

one question at a time and waiting for user responses before proceeding. In asking these 

https://tinyurl.com/simcustomgpt
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questions, the custom GPT covers various aspects of the simulation process, including initial 

assessment, research question clarification, simulation design, code development, result 

interpretation, and visualization. We also directed the custom GPT to tailor its language to the 

user’s experience level, offer clear explanations, and emphasize methodological rigor and 

reproducibility. The instructions were set up to avoid having the custom GPT make assumptions 

about the user’s prior knowledge or provide overly technical language without explanation.  

Using the GPT to Employ MCSs 

Following a similar approach to extant research, our custom GPT was developed to help 

scholars better understand answers to general questions about MCSs,  articulate simulation 

objectives, and translate complex methodological concepts into actionable steps by providing 

detailed code. An important benefit of our GPT is that it can provide explanations tailored to the 

user’s level of expertise, especially by allowing users to ask multiple questions or to solicit the 

GPT to rephrase a response. In this section, we describe the overall application of our GPT.  

General questions about MCSs. The most basic use for our custom GPT involves 

helping researchers understand the intuition underlying simulation techniques. Although we 

previously highlighted the major steps in MCSs, researchers can engage the GPT to dive into 

specific questions. For instance, scholars might ask the GPT, “What types of DGPs are best for 

MCSs investigating models of firm performance?” or “Explain how MCSs help to understand 

statistical bias and efficiency.” Inquiries like these will prompt high-level responses from the 

GPT that the user can then iterate to gain as much (or as little) insight as desired.  

Articulation of simulation objectives. The custom GPT engages a researcher in an 

iterative dialogue to refine the overall objectives of the study. This interaction can help a 

researcher understand specific methodological issues and/or apply empirical techniques 
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(Megahed et al., in press). In the process of clarifying research objectives, it also directs the 

researcher to consider the key methodological considerations relevant to the focal 

methodological question. Drawing from its knowledge of simulation techniques, informed both 

by our design and the information otherwise available on the ChatGPT platform, the custom GPT 

suggests appropriate approaches to help tailor the simulation design to specific research or 

learning needs. It can also assist in refining the scope of the simulation study by having 

discussions about the trade-offs between complexity and interpretability. In doing so, it can assist 

the researcher in determining the optimal number of parameters to vary and the range of 

conditions to examine with the simulation.  

Coding. In our view, the most useful aspect of the GPT is its ability to translate research 

questions into code that researchers can reproduce in R or Stata. Although other reviews of 

MCSs provide relevant code for their particular lines of inquiry (e.g., Certo et al., 2016; 

Balasubramanian et al., 2024), these papers can become outdated, and they provide code that 

readers must learn, interpret, and modify for applications other than the focal study at hand. This 

is particularly true as programming languages and software continue to develop, as there may be 

more updated statistical packages that enhance analytical efficiency. By contrast, our GPT allows 

users to generate customized code matching the researcher’s objective and draws from the most 

current statistical resources available, which dramatically lowers the bar to entry to create MCSs.  

For example, our GPT can aid a researcher in specifying the distributions of variables in 

the DGP. Recognizing many variables in strategy research deviate from the normal distribution 

(Certo et al., 2024b), the custom GPT can guide users in generating non-normally distributed 

variables by offering specific coding packages/commands or requisite formulas that extend 
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beyond those commands. It, in turn, provides code snippets and explanations for creating 

variables with specific distributional properties, such as skewness or kurtosis.  

Similarly, for researchers working with panel or multilevel data, which are common in 

strategic management, the custom GPT can offer guidance on creating nested data structures in 

the DGP. Users can specify within-firm and between-firm variance components, ensuring the 

simulated data accurately represents the complexities of longitudinal or hierarchical strategy-

focused datasets. It can also assist in incorporating more advanced features into the DGP, 

including endogeneity, selection bias, extreme outliers, and heteroskedasticity, which are often 

present in strategy data. The customized GPT can also suggest diagnostics to verify that the DGP 

meets the intended specifications and provide guidance on adjusting parameters to achieve 

desired characteristics. This iterative process ensures the final DGP produces data that closely 

aligns with the researcher’s intended scenario and reflects realistic strategy phenomena. 

An Illustration Using the GPT to Create Simulation Code 

 In this section, we illustrate how to employ a simulation in Stata by using prompts 

provided to (and then received from) our custom GPT. Our goal is to create simulation codes for 

a DGP with firm-year panel data, employing a random-effects regression model, and then 

ultimately retaining the estimated coefficients and standard errors. We include the screenshots of 

the conversations with the custom GPT (Figures 1 to 5).  

Employing a simulation with the GPT. To help researchers, we include four broad 

interactable options from the onset of the GPT initial screen: designing a simulation in Stata, 

designing a simulation in R, helping interpret the results from our existing MCSs, and providing 

the general steps for a simulation (Figure 1). It is important to highlight that these options are 

example prompts and are not required for using the GPT. Instead, they represent a starting point 
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for users who may feel uncomfortable initiating an idiosyncratic conversation with the GPT, 

whereas more sophisticated researchers are able to bypass them completely and start by entering 

their own inquiries. For example, a researcher could get started by indicating, “Create a 

simulation examining the effectiveness of random effects models.” Combined, these options give 

researchers the flexibility to ask specific simulation-related questions for their studies. Table 4 

includes a number of prompt examples researchers might use when interacting with the GPT. 

--Insert Figures 1 to 5 and Table 4 about here-- 

In this illustration, we aim to obtain simulation codes for a regression model, so we select 

the option: “I am designing a simulation in Stata. Can you help?” After submitting our inquiry, 

we go through the model specification where the assistant responds by asking us to describe the 

type of simulation we want to design—whether we are working on a regression model, 

generating a random dataset, or testing a specific hypothesis (Figure 2). We reply that we are 

working with a regression model. The assistant then asks for more details, including the type of 

regression model (e.g., linear or complex) and the number of iterations we plan to run. We 

indicate our intention to run a panel regression with 1,000 iterations. Next, we specify the model 

and number of observations, explaining that we need a dependent variable y, a random 

continuous independent variable x with a coefficient of 0.1, a random binary variable w with a 

coefficient of 0.5, and a normally distributed error term. We also require a panel dataset 

consisting of 1,000 units (e.g., firms) over a span of 10 years (i.e., 10,000 total observations in 

the sample, which then gets iterated 1,000 times over).  

It is imperative to emphasize all of the values depicted here are simply for demonstration 

purposes and are not necessarily best practices for designing a simulation. We suggest that 

researchers start with a thorough literature review when designing MCSs to get a sense for 
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reasonable effect sizes, sample sizes, and variable distributions. Researchers can use the GPT, for 

example, to ask about realistic parameters by employing prompts such as “What are typical 

sample sizes in strategy research?” or “What type of distribution should I use for the dependent 

variable?” or “How much between-firm variance should I include when generating firm 

performance as a dependent variable?” Scholars might also consider downloading data directly 

from databases to better understand the properties of their variables. Certo et al. (2024b), for 

example, downloaded data from Compustat to examine the non-normality of performance 

variables and designed a DGP to mimic these variables.  

The custom GPT then provides us with the steps for creating the simulation code in Stata 

(Figures 3 and 4). The code begins by setting the seed to ensure reproducibility. Next, it sets up 

the program, named “mysim,” to specify the panel data structure, with each firm having a unique 

ID over 10 years. The code also generates the firm-level error term for the random effects. As 

requested, the independent variable x is created using a normal distribution, while the binary 

variable w follows a binomial distribution with equal probabilities of 0 and 1. With the full 

regression model, the code returns the coefficients and standard errors from each iteration. After 

running the simulation 1,000 times within the “mysim” program, we can obtain the final outputs, 

including the summary statistics for the average coefficients and standard errors, along with their 

means and standard deviations over iterations. The assistant also provides explanations of the 

codes for each step (Figure 5). Overall, the custom GPT offers user-friendly and detailed 

guidance, making it accessible for researchers to conduct simulation analyses and meet their 

research needs, even if those researchers have little or no simulation training. 

 Revising the simulation and error messages. In our experience, designing MCSs with 

this GPT is an iterative process. At times, the codes provided by the GPT sometimes result in 
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error messages when tested in R or Stata, with the latter receiving slightly more errors than the 

former owing to its proprietary (rather than open source) nature. However, it is easy to simply 

copy error messages and paste them directly into the GPT as prompts. When doing so, the GPT 

will search for alternative codes or approaches, a process that can be applied repeatedly.  

DISCUSSION AND CONCLUSION 

Our primary objective was to describe the intuition and processes used to conduct MCSs 

with the intention of enhancing the quality of methodological procedures in strategic 

management. Despite the scholarly impact of multiple strategy articles adopting MCSs, many 

strategy scholars lack familiarity with the technique. We have sought to address this tension by 

providing a comprehensive overview of the simulation process, introducing a custom GPT to 

assist scholars with simulation research, and outlining future directions for simulation-based 

research in strategy to continue to better investigate the efficacy of empirical techniques. 

Our study offers several methodological contributions to strategic management. First, we 

provide a comprehensive overview of MCSs. We explain the intuition of MCSs and review the 

reasons why scholars in the social sciences use them. We then review how strategy researchers 

have adopted MCSs to examine the overall effectiveness of a variety of statistical techniques. 

Our overview serves not only to help researchers interpret published simulation studies but also 

to encourage broader adoption of MCSs in strategy research. 

 Second, to make MCSs more accessible, we also developed, implemented, and 

introduced a custom GPT designed specifically to aid researchers in conducting and interpreting 

MCSs. This GPT guides users step-by-step through the process of crafting MCSs as they go from 

idea conceptualization to implementation to interpretation of the results. By providing tailored 

assistance and generating executable code for R and Stata, the custom GPT has the potential to 
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lower the barriers for scholars interested in creating MCSs. We hope our GPT tool will help to 

accelerate the adoption and further advancement of simulation techniques, which can potentially 

lead to new methodological insights in strategy research. 

Our custom GPT offers several advantages to strategy researchers who seek to run MCSs, 

increasing both accessibility and rigor. Many strategy researchers, while experts in their content 

areas, may lack the advanced programming or statistical skills required to develop complex 

MCSs. Our custom GPT bridges this knowledge gap by providing step-by-step guidance and 

code generation that enables a broader range of researchers to use these techniques. By helping 

to refine research questions and design an appropriate DGP, the GPT assists researchers in 

simulating data that better represent the complexities of strategy research. Scholars can also learn 

about different aspects of simulation design and analysis through their interactions with the 

custom GPT, potentially enhancing their methodological skills. It also has the potential to help 

promote reproducibility in research by providing clear, documented code for each step of the 

simulation process. Further, by streamlining the simulation process, researchers are able to focus 

more on the methodological implications and interpretations of their results rather than becoming 

mired in technical details, resulting in richer methodological contributions from simulation 

studies. 

Finally, in the following section, we offer an agenda for future research applying MCSs. 

With this research agenda, we emphasize the need for MCSs that better reflect the realities of 

strategy data. Most simulation-based strategy research has assumed variable normality and the 

absence of a nesting structure (Semadeni et al., 2014; Busenbark et al., 2022). Yet recent work 

suggests strategy research often features some type of nesting structure (typically panel data) and 

extreme non-normality in the distribution of key variables (Certo et al., 2017; Certo et al., 
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2024b). Accordingly, we assist in rectifying the misalignment between MCSs and reality by 

offering a research agenda and tool that can aid researchers in examining these dynamics. We 

also highlight several opportunities to leverage MCSs to further the field’s understanding of 

statistical concepts—including systems of equations, probability distributions of outcomes, and 

statistical power—that are emerging as important methodological considerations. We hope our 

proposed research agenda will direct future simulation studies to align more closely with the 

empirical contexts strategy researchers often encounter. 

Future Directions and Applications for MCSs 

We believe advances in computing power and artificial intelligence have the potential to 

dramatically increase the use of MCSs in strategy research. Historically, coding expertise has 

created an entry barrier for scholars interested in using MCSs, an issue almost entirely resolved 

by AI. Whether it is our customized GPT or other AI interfaces (e.g., DeepSeek, Gemini), these 

algorithms can create customized MCSs in seconds that would require days from even the most 

experienced coders. Accordingly, we believe these tools will not only open the door to 

researchers who are new to coding, but they will also help researchers who are familiar with 

coding to conduct such research more quickly and effectively. 

With these new tools in hand, we now shift our attention to elaborating future directions 

or applications of the simulation procedures we have delineated thus far. In the following 

sections, we detail what we think are some of the most exciting new directions for simulation 

research in strategic management. As we describe, these directions can help researchers 

understand some of the unique characteristics of data used in strategy research.  

Nested (or panel) data. Despite the notable methodological advancements from the 

literature that uses MCSs to examine empirical techniques—please see Table 1 for a summary of 
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these studies—research in the area has relied almost exclusively on cross-sectional data. Part of 

the reason for this focus is likely because multilevel or nested data introduce new empirical 

challenges that detract from the core message of a given study (Kennedy, 2008) and also because 

simulating such data is somewhat difficult in its own right (a challenge we help alleviate with our 

GPT). At the same time, strategy scholars routinely describe how the broader domain relies to a 

large degree on panel (firms nested within years) and multilevel (firms nested within industries, 

etc.) data (Certo et al., 2017; Shaver, 2021), as well as the unique empirical challenges associated 

with this type of structure (McNeish and Kelley, 2019; Bliese et al., 2020).  

We surmise that simulation-based methodological research would benefit from 

considering empirical inquiries in the context of both cross-sectional and nested data to 

determine (a) whether the focal models or estimation issues manifest uniquely in both data 

structures and (b) if there exist any underexplored techniques that may help scholars navigate the 

challenges associated with nested data. Similarly, perhaps it is the case that unexplained 

heterogeneity—a topic that has garnered attention from several studies employing MCSs (e.g., 

Semadeni et al., 2014; Busenbark et al., 2022; Certo et al., 2016)—impacts outcomes differently 

depending on the level of the data. Along these same lines, scholars have adopted MCSs to 

examine probabilistic models (Zelner, 2009; Woo et al., 2023), and nested data could also help 

illustrate idiosyncrasies associated with conditional (i.e., fixed effects) logistic modeling. 

Although these are just a few examples of methodological areas that could stand to benefit from 

fuller incorporation of nested data in MCSs, many existing MCSs could be extended to examine 

the potential effects of nested data structures.  

Non-normally distributed variables. With the exception of research on binary 

dependent variables (Zelner, 2009; Woo et al., 2023) and one study specifically about non-
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normality (Certo et al., 2024b), most studies that adopt MCSs tend to generate normally 

distributed variables. Much as was the case for nested data, this focus is likely due to the fact that 

non-normality can induce a host of empirical issues unrelated to the question at hand, as well as 

because simulating non-normally distributed variables is challenging, to say the least (an issue 

we again help resolve with our custom GPT). Yet, scholars indicate that many variables germane 

to strategy research depart heavily from a normal distribution and thus undermine the 

assumptions of most parametric estimators (Henderson et al., 2012; Certo et al., 2024b). 

Accordingly, methodological work adopting MCSs could benefit a great deal from coupling the 

issues at the heart of any particular study with the implications of the non-normal data. 

One area that could especially advance extant research methods knowledge involves 

marrying the empirical issues associated with non-normality with those stemming from nested 

data. To the best of our knowledge, it remains unclear whether the efficiency challenges from 

non-normally distributed dependent variables (Wooldridge, 2010) would manifest in a panel (or 

nested) data situation owing to the increased power in such samples and the diffusion of variance 

across multiple levels. Similarly, it remains unclear whether the distribution of observed and 

omitted variables amplifies or attenuates bias from unexplained variance. Perhaps it is the case 

that correlations between specified regressors and the error term are driven by outlying 

observations or a portion of the distribution that gets adjusted by variable transformations or 

modeling procedures. In the end, essentially all of the research that has adopted MCSs could be 

replicated with various distributions of the key parameters, if for no other reason than to ensure 

the central conclusions remain intact. 

Systems of equations. With the exception of multi-stage instrumental variable 

techniques geared toward reducing bias from unexplained heterogeneity, most strategy research 
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involves estimating relationships in a single structural model (Shaver, 2021; Ketchen et al., 

2008). In other words, scholars tend to focus on a single equation that estimates a marginal 

impact on the dependent variable for a unit change in an independent variable, sometimes as 

being contingent or contextualized on a third parameter (Aguinis et al., 2017). At the same time, 

more micro-oriented management research routinely recognizes that a structural equation (and 

the marginal effect on the dependent variable) is often path dependent on preceding variables or 

initial stage specifications, an idea often addressed via structural equation modeling or mediation 

(Kline, 2015; Aguinis et al., 2017). In a structural equation or mediation model, the change in a 

dependent variable (y) is a function of the impact on an independent or mediating variable (x) 

and a preceding variable (z) that works to predict both y and x.  

Broadly speaking, strategy research has largely overlooked this actuality in no small part 

due to the complexities of macro-oriented archival data and the pursuit of addressing the several 

model violations we summarized previously. MCSs, however, allow scholars to craft a known 

universe of data with all other assumptions upheld. So, we envision such an approach as being 

fruitful for revisiting several traditional macro-oriented econometric topics—e.g., limited 

dependent variables (e.g., Long and Freese, 2014), panel data (e.g., Certo et al., 2017), 

difference-in-difference (e.g., Roth et al., 2023), endogeneity (e.g., Semadeni et al., 2014), and 

many others—in the context of systems of equations and/or mediation. Perhaps it is the case that 

lower-order equations in the system can exacerbate bias via their own violated assumptions, or 

maybe properly specified lower-order equations can help alleviate estimation challenges in a 

structural model by offering more insight into the focal variables. There is no doubt that MCSs 

can provide a great deal of insight into these methodological challenges. 

Using MCSs as customized power calculators. Strategy researchers have emphasized 
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the challenges associated with null hypothesis significance testing (Bettis et al., 2016), one of 

which is that it is difficult to ascertain whether a “significant” estimate represents a statistical 

anomaly or is representative of a true population effect (Goldfarb and King, 2016). Stated 

differently, after researchers obtain data and run empirical models, it often remains unclear 

whether the null hypothesis was rejected (or failed to get rejected) because of actual relationships 

or artifacts of the data. To offer more insight in this regard, we propose that scholars can employ 

MCSs to get a better sense of the likelihood their model should reject the null hypothesis based 

on the underlying properties of the data.  

In many ways, these ideas extend the seminal statistical power tables produced by Cohen 

(1992), which are certainly valuable but perhaps not as effective for researchers using non-

normal variables and more complex research designs. To help better contextualize statistical 

power for data and empirical settings that strategy scholars confront, researchers can specify the 

sample size of a simulation using the number of observations in their data, the correlation(s) 

between a vector of independent variables and their dependent variable using those correlations 

from those data, and then their estimator(s) of interest. Researchers can then compute the 

percentage of iterations with a statistically significant result following the procedure we outlined 

previously, which can help contextualize the findings from their own data. 

Although not infallible, using simulations as customized power calculators can provide 

crucial insight to help guide empirical strategies. In one scenario, a simulation might reveal a 

relatively high percentage of significance, such that insignificant findings from the actual data 

may signal an irregularity, or significant findings may indicate consistency with the underlying 

data. In another scenario, a relatively low percentage of significance may indicate that a 

significant finding from the actual data demonstrates the novelty of the theory and sample, or it 
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could point to an anomalous outcome. Alternatively, MCSs illustrating a low percentage of 

significance might also help researchers reconsider their data approach or empirical context 

when their own findings are insignificant rather than assume the hypothesis is unsupported.  

In many ways, our proposal here extends a nascent line of inquiry that has begun using 

MCSs to examine what relationships between particular conceptual/theoretical variables should 

exist absent certain model assumption violations. For instance, Frake et al. (2024) adopt MCSs to 

revisit the relationship between having a female CEO and the career outcomes of other women in 

the organization by simulating a scenario without supposed collider bias. In doing so, they 

suggest that findings in the literature may represent statistical artifacts rather than true 

associations between the variables. Similarly, Balasubramanian et al. (2024) incorporate MCSs 

to examine employee financial imperatives in the presence of employment restrictions that are 

rarely observed in practice. Using MCSs, they explore elements of the employee and agreement 

selection process that archival data simply do not reveal but that confer important implications 

for the models that test relationships in this area.  

Limitations 

 Despite the potential for MCSs to improve empirical research in strategic management, it 

is important to note the limitations of MCSs. Perhaps the most important limitation is that MCSs 

involve the generation and analysis of artificial data that simplifies reality. Although the most 

effective MCSs will attempt to generate data that mimic the research context—an imperative that 

we help amplify and enable with our custom GPT—it is impossible to replicate reality perfectly. 

As such, authors, reviewers, and editors must recognize no simulation is perfect, but the most 

effective MCSs will attempt to mimic reality.  

We should also note that, in our experience, some reviewers may lean too heavily on this 
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criticism when evaluating papers using MCSs. Specifically, reviewers may call for “real” data 

instead of simulated data to evaluate statistical techniques. While we appreciate this sentiment, it 

belies the benefits of MCSs, namely that researchers never know the “true” DGP of data 

collected from the real world. For instance, researchers may evaluate the efficacy of two 

different models using real data, but it is impossible to determine which is “true” because the 

real-world data may include other issues the researcher is not controlling (e.g., endogeneity, 

reverse causality). In contrast, MCSs allow researchers to specify the exact data generation 

process, allowing for a more controllable context in which to study bias, efficiency, and 

consistency. Physicist and Nobel laureate Richard Feynman once famously wrote, “What I 

cannot create, I do not understand” (Way, 2017: 2941). Using MCSs—unlike “real” data—

allows researchers to understand true relationships because they created every aspect.    

 Another limitation of MCSs involves computing power. Although most machines are able 

to accommodate MCSs with great expediency, even the most powerful processors can sometimes 

encounter challenges with MCSs involving sophisticated algorithms like machine learning (Stolfi 

and Castiglione, 2021) or Bayesian analyses (Certo et al., 2024a). Given that such techniques 

advance in parallel with improvements in computing power, we anticipate this is a challenge that 

may require scholars to use supercomputers when seeking to adopt MCSs in these contexts. 

 We should also acknowledge the limitations of using GPTs and similar tools to generate 

simulation code. Large language models operate as black boxes and are known to occasionally 

produce incorrect information. In our experience, we have found that GPTs also produce errors 

when generating computer code. But we have also found that these tools are able to interpret 

error messages and easily adjust code, making them useful for iterative debugging. Relatedly, 

just as drop-down menus and point-and-click user interfaces have allowed researchers to run 
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sophisticated statistical models in software packages without fully understanding the associated 

complexities (e.g., assumptions, options), there are dangers associated with authors blindly 

accepting AI-generated code. AI—whether our customized GPT or other tools—may not 

generate the code an inexperienced author believes it is providing. Importantly, this issue of code 

not representing the intent of an author has always plagued empirical research—even before AI. 

As such, it is imperative for researchers to understand the myriad issues surrounding both DGPs 

and statistical models.  

Conclusion   

 In this paper, we provide an overview of MCSs aimed at improving the methodological 

rigor in strategy research. Our review highlights important characteristics that are unique to 

strategy research and demonstrates how our custom GPT can help accelerate the process required 

for researchers to learn and employ MCSs. Coupled with our research agenda, we hope that 

scholars find MCSs a powerful tool for advancing strategy research. 
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Table 1. Literature review on Monte Carlo simulation in strategy research 
 

I. Studies II. Simulation Purpose III. Iterations IV. Samples Size V. Outcome Measures VI. Findings 
Certo and Semadeni 
(2006) 
 

To study the impacts of 
contemporaneous correlation 
in panel data in strategic 
management research. 
 

1,000 200 Overconfidence (the ratio of 
the standard deviation of the 
1,000 estimates to the root 
mean square average of the 
1,000 standard errors) and 
95% confidence interval. 
 

Contemporaneous correlation 
and heteroskedasticity affect 
the outcome measures, while 
autocorrelation does not. 

 

Henkel (2009)  
 

To show how skewness can 
affect the measurement of 
risk-return relationship, and 
how it can be addressed. 
 

100 1,000 Spurious contribution to the 
measured covariance, 
correlations, and standard 
deviations. 

The spurious effect of 
skewness reversed the signs 
of the estimated correlations. 

 

Zelner (2009)  
 

To capture the changes in 
predicted probabilities given 
the change in the value of 
the predictors. 
 

1,000 469 (from the 
original Leiblien 
and Miller’s 
(2003) study) 

Estimated coefficients, 95% 
confidence interval, and 
difference in predicted 
probabilities. 

To showcase the use of Monte 
Carlo simulation for easier 
statistical and graphical 
interpretation. 

Parker and Witteloostuijn 
(2010) 

To compare the General 
Interaction approach with 
different contingency fit 
estimating techniques. 
 

10,000 18, 39, 90, and 
163 observations, 
depending on the 
models. 

Detection of true interaction 
effects, measurement error, 
statistical robustness under 
small sample conditions, and 
multicollinearity. 

The General Interaction 
approach outperforms 
traditional fit methods, 
especially when handling 
interactions between multiple 
contingency variables. 
 

Semadeni et al. (2014)  1) Study the implications of 
endogeneity in OLS, 2) the 
strength and exogeneity of 
instruments, and 3) how 
both affect the test to detect 
endogeneity. 

1,000 500 Median coefficients, median 
standard errors, 95% 
confidence interval, and 
percentage significance. 

Low endogeneity can bias 
OLS results. Both weak and 
moderator instruments can 
provide more accurate 
estimates but with lower 
statistical power. Strong and 
exogenous instruments can 
help detect endogeneity. 
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Certo et al. (2016) 
 

1st study: When sample 
selection process bias 
results. 2nd study: How to 
use the Heckman model. 3rd 
study: How the Heckman 
model addresses 
endogeneity from sample 
selection. 
 

1,000 1,000 Average coefficients, 
standard errors, percent 
significance, correlations, 
and Pseudo R2. 

Heckman model can address 
potential sample selection 
bias, requiring careful 
assessment of lambda.  

Clougherty et al. (2016) 
 

To show the presence of 
self-selection bias and 
various techniques 
associated with this issue. 
 

500 250 and 1,000 
(endogenous 
treatment); 500 
and 2,000 
(endogenous 
switching) 

Mean coefficients and mean 
standard errors. 

When there are endogenous 
treatment and switching, OLS 
will provide biased estimates. 

Kalnins (2018) 
 

To test the implications of 
common-factor 
multicollinearity. 
 

10,000 1,000 Average coefficients, 
variance inflation factor, and 
Condition Index. 

When the controls share a 
common factor with the key 
predictors, this key variable 
will have a higher likelihood 
of suffering a Type 1 error. 
 

Wolfolds and Siegel 
(2019) 
 

To evaluate the performance 
of the selection models 
under different functional 
forms and variable 
assumptions. 
 

NA. Only used 
for generated 
simulated data. 
 

10,000 Coefficients and standard 
errors. 

Heckman model performs 
better than OLS, regardless of 
the error term distribution, 
with valid instruments or 
selection on observables. 

Certo et al. (2020) 
 

To study whether ratio 
variables will produce 
inaccurate estimates. 
 

1,000 1,000 Median coefficient and 
percentage significance. 
 
  

When the predictor or 
outcome is a ratio, the 
predicted relationship will 
fluctuate when the dispersion 
of the denominator changes. 
Ratio as a control will also 
affect the estimated 
relationship. 
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Sharapov et al. (2021) 
 

To assess whether the 
Shapley Value approach 
performs better than the 
ANOVA, multi-level, and 
VCA approaches.  
 

1,000 1,000 Estimated proportion of total 
variance and root mean 
square errors. 

The Shapley Value approach 
generates more accurate 
estimates of variance 
contributed compared with 
other techniques. 

Villadsen and Wulff 
(2021) 
 

To study the differential 
performance of various 
fractional outcome 
approaches. 
 

1,000 800 Marginal effects at the mean 
and robust standard error. 

Using the log-odds 
transformation or Tobit model 
will generate bias in 
estimating marginal effects. 

Busenbark et al. (2022) 
 

To examine how the omitted 
variables cause bias in a 
causal estimation. 
 

1,000 1,000 Estimated coefficients and 
standard deviations. 

Omitted variables need to 
have high correlations with 
the predictors to cause 
meaningful bias. 
 

Eckert and Hohberger 
(2023) 
 

To demonstrate the strengths 
and weaknesses of the 
Gaussian Copula approach. 
 

500 500 Median coefficients, t-bias 
measure, median standard 
errors, percentage 
significance of the 
coefficients, and correction 
terms in the Gaussian Copula 
approach. 
 

Gaussian Copula approach 
works as well as instrumental 
variable approaches as long as 
its assumptions are satisfied. 

Woo et al. (2023) 
 

To examine the empirical 
issue related to the use of 
rare and common event 
models. 

1,000 100 to 1,500 
 

Average estimated 
coefficients, standard errors, 
percentage significance, and 
percentage of model 
convergence. 
 

More rare events will bias 
estimated coefficients and 
standard errors, causing 
inaccurate causal inferences. 

Balasubramanian et al. 
(2024) 
 

To examine whether the 
potential impacts of 
selection into restriction 
adoption influence the main 
empirical results. 
 

100 1,000 The proportion of the 
variance explained by the 
predictors. 

The causal treatment effects 
are not affected much by the 
selection effect. 

Certo et al. (2024b) 
 

To investigate the 
implications of the 

10,000 1,000 Mean coefficients, standard 
errors, percentage 

Nonnormal distribution of a 
dependent variable will 
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nonnormality of the 
dependent variables. 
  

significance, and the average 
number of outlier 
observations. 
 

decrease the efficiency of 
OLS regression. 
 

Frake et al. (2024) 
 

To test in what conditions 
the collider bias is more 
serious. 
 

100 1,000 Coefficients and p-values. When there are TMT 
members with the wage 
premium paid to the 
individuals who will become 
CEOs or smaller TMT sizes, 
the bias increases. When the 
proportion of women on the 
TMT increases, the bias 
decreases and remains 
negative. 
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Table 2. Steps for Designing Simulations 
 
Steps Descriptions Examples 
1. Defining the research 

questions 
• What methodological issue am I probing (e.g., 

endogeneity, bias, sample selection)? 
 

“How can I use simulations to illustrate the 
consequences of endogeneity and the 
robustness of the techniques prescribed to 
circumvent these consequences?” 
 

2. Designing the data 
generation process 

• Choose variables & distributions. 
- Dependent variable y (normal/skewed?) 
- Key independent variable x (continuous/binary?) 
- Error term e (normal/heteroskedastic?) 

• Specify relationships (equation or correlation matrix). 
• Set experimental conditions (sample size, iterations, 

parameters to vary). 
 

• Equation: y = 0.1 × x + e. 
• Vary corr(x, e) = 0, 0.1, 0.3 to induce 

endogeneity. 
• Sample = 500; iterations = 1,000.  

3. Analyzing data and creating 
outcome measures 

• Select empirical model(s) to estimate (e.g., OLS, 2SLS, RE 
logit). 

• Store parameter estimates & fit statistics for every iteration. 
 

Run OLS and 2SLS on each synthetic dataset; 
save β, SE, p-value, R² for 1,000 iterations. 

4. Summarizing results • Aggregate estimates across iterations (means, medians, 
SDs). 

• Compute diagnostics: 
- Bias = mean(β) – true β 
- Efficiency = mean(SE)  
- Consistency = trend as N increases 

• Compare methods/conditions. 
 

Averaged βs and SEs across iterations; 
compared to true values to judge bias and 
efficiency of OLS versus 2SLS.  
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Table 3. Summarizing outcome variables from the simulation 
 
 

Summary Variable Calculation Purpose/Interpretation 

Coefficient  Any given coefficient (e.g., Bx1) across 
all the iterations in the simulation.  

Used to gauge bias/inaccuracy of the estimator. Mean 
coefficient values closer to zero than specified exhibit 
suppression bias, whereas those further from zero than specified 
exhibit inflation bias. 

Standard error  
Standard error for any given parameter 
(e.g., S.E. of Bx1) across all the iterations 
in the simulation.  

Used to gauge efficiency. Mean standard error values smaller 
than specified represent more efficient models, whereas those 
higher than specified represent less efficient models. 

Percent significant 

Percentage of the simulation iterations in 
which the parameter estimate is 
statistically significant (at any desired 
threshold). 

Used to gauge statistical power (and/or types of error). Percent 
significant values that exceed the specified level represent Type 
I error, meaning false positives. Percent significant values that 
fall short of the specified level represent Type II error, meaning 
false negatives. 

Correlation[y, x]  Correlation between two variables across 
all the iterations in the simulation. 

Used to gauge bias/inaccuracy of the DGP. When adopting the 
slope-based DGP, the mean/median correlation should remain 
consistent across all iterations when the effect size is held 
constant. Changes in these values can indicate issues with the 
DGP. 

r-squared  
Model r-squared (or adjusted r-squared) 
values across all the iterations in the 
simulation. 

Used to gauge model-level effect sizes, which can provide 
insight into bias/inaccuracy. The model is upwardly biased when 
r-squared values exceed their specified value, and the model is 
downwardly biased when r-squared values fall short of their 
specified value.  

Other model-level 
characteristics  

Any relevant model-level output (e.g., 
MSE, f-statistic, log-likelihood) across 
all the iterations in the simulation. 

Researchers are able to examine any model-level characteristics 
desired to determine whether changing a condition alters model 
estimates, or whether these appear to fluctuate within conditions 
(indicative of issues with the DGP). 
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Table 4. Example Prompts to Use in Customized GPT 
 

1. Variable distributions 
a. How do I change the distributions of the variables in the simulation? 
b. How do I make the dependent variable follow a skewed distribution? 
c. How can I compare different variable distributions in my simulation? 
d. How can I generate multilevel or longitudinal variables in my simulation?  
e. How do I create variables with values contingent on another indicator? 

 
2. Data Generation Process (DGP) 

a. How do alter the effect size of the independent variable in my DGP? 
b. How might I examine the role of different effect sizes in my simulation? 
c. How do I incorporate control variables that are correlated with an independent 

variable in my DGP?  
d. How might I incorporate endogeneity in my DGP? 
e. Are there other ways to specify the DGP? 

 
3. Outcome measures 

a. What are the best outcome measures based on my research objectives? 
b. How do I incorporate outcome measures in my simulation? 
c. How do I interpret and evaluate the results of the outcome measures? 
d. How can I store marginal effects for interaction effects and models that use 

maximum likelihood estimation? 
 

4. Different models 
a. How might I add different types of models to my simulation? 
b. What types of models might I consider given my research objectives? 
c. How can I compare how different types of models perform in my simulation? 
d. How do I couple Bayesian estimation with [any given model]? 

 
5. Sample size 

a. How would different sample sizes influence the results of the simulation? 
b. How can I add different conditions examining the role of sample size in my 

results? 
c. How can I determine the minimum sample size required to ensure robust and 

reliable simulation results? 
 

6. Iterations 
a. How does changing the number of iterations impact my results? 
b. How do I increase the number of iterations in the simulation? 
c. How do I determine the optimal number of iterations needed for my simulation to 

achieve convergence? 
d. How do I set the seed to ensure an identical starting point each time I employ the 

iterations? 
 

7. Visualization 
a. Give me some ideas to visualize the simulation results. 
b. I would like to plot the distribution of betas from each iteration.  
c. Can you recommend techniques to visualize the convergence and stability of my 

simulation over iterations? 
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Figure 1. Screenshot of the custom GPT – Problem overview 
 

 
 
Figure 2. Screenshot of the custom GPT – Model specification 
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Figure 3. Screenshot of the custom GPT – Simulation steps 
 

 
 
Figure 4. Screenshot of the custom GPT – Simulation code 
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Figure 5. Screenshot of the custom GPT – Simulation code and explanation 
 


